Internationally indexed journal

Indexed in Chemical Abstract Services (USA), Index copernicus, Ulrichs Directory of Periodicals, Google scholar, CABI, DOAJ, PSoAR, EBSCO, Open J gate, Proquest, SCOPUS, EMBASE, etc.

Rapid and Easy Publishing

The “International Journal of Pharma and Bio Sciences” (IJPBS) is an international journal in English published quarterly. The aim of IJPBS is to publish peer reviewed research and review articles rapidly without delay in the developing field of pharmaceutical and biological sciences.

Indexed in Elsevier Bibliographic Database (Scopus and EMBASE)

SCImago Journal Rank 0.288
Impact factor 2.958
Elsevier Bibliographic databases
(Scopus & Embase)

SNIP value – 0.77
SJR - 0.288
IPP - 0.479

SNIP – Source normalised impact per paper
SJR – SCImago Journal rank
IPP – Impact per publication

Source – www.journalmetrics.com
(Powered by scopus (ELSEVIER))

And indexed/catalogued in
many more university

*Instruction to Authors visit www.ijpbs.net
For any Queries, visit “contact” of www.ijpbs.net
TOXICITY PROFILE AND CHEMICAL CONSTITUENTS OF THE INGREDIENTS OF A SIDDHA DRUG - KANDHAGA RASAYANAM

MEENA R*1 AND RAMASWAMY RS2

1 Ph.D scholar, Sirappu maruthuvam Department, National Institute of Siddha, Chennai, India.
2 Prof. Dr. R.S. Ramaswamy, M.D (Siddha) Director General, Central Council for Research in Siddha, Arumbakkam, Chennai- 600106, India.

ABSTRACT

Siddha system of medicine is a traditional system practised among Tamil speaking people of India. Siddhars, the ancient scientists are the founders of this system. Herbs, minerals/metals and animal products are used in medicine preparation. Kandhga Rasayanam is a herbo mineral drug mentioned in classic Siddha text. It is used in treating skin diseases, urinary infections, venereal diseases, arthritis etc. The present review is aimed to collect information about toxicity studies and phytoconstituents substantiating the traditional claim of safety and efficacy. Most of the herbal drugs were found to be nontoxic and rich in secondary metabolites responsible for antimicrobial, antifungal and antioxidant properties. This compound drug mentioned in Siddha literature is thus validated.

KEYWORDS: Siddha system, Siddhars, Herbo mineral drug, Kandhaga Rasayanam, skin diseases.

MEENA R
Ph.D scholar, Sirappu maruthuvam Department, National Institute of Siddha, Chennai, India.

*Corresponding author
INTRODUCTION

Siddha system of medicine is one of the ancient system of medicine. The Siddha system has its origin in Lemurian continent. It was followed by Dravidians. Siddha system is associated with religion, culture and philosophy. This system has a holistic approach to treatment. It not only treats the body, but also the mind and the soul. The medicines in Siddha are prepared from herbs, metals/minerals and animal products. Kandhaga Rasayanam is a Siddha drug chosen from the classical Siddha text Siddha Vaidhya Thirattu. It is indicated for skin diseases, urinary tract infections, venereal diseases, arthritis etc. This review article is aimed to document the chemical constituents, and toxicity profile of each ingredient of Kandhaga Rasayanam. This is to validate the traditional claim in treating the skin diseases, vatha diseases and venereal diseases. The drug acts by the concept of synergism. The drug is in practice since many decades and so far no toxicity was reported. A review of literature through books, articles in journals, publications and through a systematic search through major computerized databases pertaining to toxicity, chemical constituents of each ingredient of Kandhaga Rasayanam were done. The drug has undergone all preliminary analytical studies, toxicity study and has entered into an open clinical trial for treating Tinea infections. (results yet to be published). The results of the preliminary phytochemistry of Kandhaga Rasayanam revealed the presence of many secondary metabolites attributing to its therapeutic activity. The toxicity profile and phytocostituents are discussed in this review. Drug name: Kandhaga Rasayanam.

INGREDIENTS OF KANDHAGA RASAYANAM:

The drug consists of 15 herbs and one mineral. The herbs are Withania somnifera, Smilax china, Phyllanthus emblica, Terminalia chebula, Terminalia bellirica, Zingiber officinale, Piper nigrum, Piper longum, Embelia ribes, Elletaria cardamomum, Santalum album, Cinnamomum zeylanicum, Cicer arentinum, Semecarpus anacardium, Plumbago zeylanicum. The mineral is sulphur. Other names of sulphur are: kaarilayin naadham, parai veeriyam, atheedha prakasam, peejam, selvivindhu, sakthi, sakthi peesam, sendhoorathadhi, dhanam, deviyuram, nadham, natram, parai nadham, ponvarni, rasa suronitham. Actions: Cholagogue, laxative, tonic.

TOXICITY PROFILE OF INDIVIDUAL RAW DRUG

Withania somnifera

No toxic signs/ mortality was observed with 2000mg/kg of hydroalcoholic extract of Withania somnifera root extracts in rats. Also, no histopathological lesions were observed. Alcohol extracts of Withania somnifera were also found to be safe in mice and rats. No toxic signs were reported in acute and subacute toxicity. The LD_{50} was determined as 1260 mg/kg body weight. The author has reported significant reduction in weight of spleen, adrenal and thymus in male rats alone. Acid phosphatise level in blood was also increased compared to normal control. Mishra et al has stated that amukkara possess various therapeutic effects with little/ no toxicity.

Smilax china

Parangipattai rasayanam, a siddha drug with Smilax china as a major ingredient was tested for toxicity in rats. The drug at its maximum dose 1800 mg/kg did not exhibit any toxicity in acute and 28 days toxicity. There was no toxicity observed with the water extract of Terminalia chebula at a single oral dose of 5000mg/kgb.w. In chronic toxicity (270 days), the test substance at the dose of 300, 600 and 1200
mg/kg b.w. did not show any toxic signs in rats. In acute toxicity study, 50% alcoholic extract of *Terminalia chebula* showed no toxic changes. Acute and subchronic toxicity of aqueous extract of *Terminalia chebula* dried fruits exhibited no toxic changes.

Phyllanthus emblica

Single oral dose of water extract of *Phyllanthus emblica* (5000mg/kg b.w) with 20% gallic acid showed no toxicity in Sprague Dawley rats. Chronic toxicity dose range of 300, 600 and 1200 mg/kg b.w resulted in slight differences in body weight and organ weight when compared with control animals. There were also changes in haematological and biochemical parameters, but within normal limits. A study has reported that 49.6% hydroalcoholic extract of amla was found to be safe in rats. LD$_{50}$ was above 1000mg/kg.

Terminalia bellerica

The aqueous extracts of dried fruits of *Terminalia bellerica* were assessed for acute and chronic toxicity in Spargue – dawley rats. In acute toxicity the aqueous extract at a single oral dose of 5000mg/kg b.w did not show any toxicity. The *T.bellerica* was found to be nontoxic at the dose of 300, 600 and 1200 mg/kg b.w for 270 days. Another study has reported that in acute toxicity study, the ethanol, chloroform, hexane and water extract of *Terminalia bellerica* was found to be nontoxic. The LD$_{50}$ was determined as 2000mg/kg.

Zingiber officinale

The crude ehanolic extract of Zingiber officinale Roscoe at the dose of 5000mg/kg body weight did not exhibit any toxicity in acute and subacute toxicity studies in rats.

Piper nigrum

Chunlaratthanaphorn S, et al in his study has reported that water extracts of the dried fruits of *Piper nigrum* exhibit no toxicity in both acute and sub- acute toxicity in male and female rats. Prashant B.Shamkuwar et al has studied the toxicity of aqueous extract of *Piper nigrum* and piperene as per OECD guidelines. There was no toxicity observed upto the dose of 2000mg/kg in albino rats by oral route.

Piper longum

According to the acute and subchronic toxicity study of *Piper longum* fruits conducted by Megha Pathak et al there was no serious toxic effects observed. Etanolic extract of *Piper longum* on mice showed a significant increase in weight of lungs and spleen in treatment group animals when compared with control group animals. The doses given in acute toxicity were 0.5, 1 and 3 gram / kg b.w. 100 mg/kg b.w of the test drug was given daily for 90 days in chronic toxicity.

Embelia ribes

Embelin present in *Embelia ribes* at the dose of 120 mg/ kg body weight for 6 weeks in female rats has shown increase weight of adrenal and several pathological changes. 1.25 g /kg body weight of *Embelia ribes* when administered to Chicks have shown degradation of ganglion cells of retina of chick. But at 0.25 g / kg no visual deficit or retino toxicity was detected. With the ethanolic extract of *Embelia ribes* no toxicity was observed at the dose of 2000 mg / kg b.w. in acute toxicity study conducted as per OECD guidelines.

Elettaria cardamomum

Jaila El Malti et al has reported in a study that *Elettaria cardamomum* produces toxicity at 0.3 mg/ g b.w.of mouse. It also affects the energy metabolism and oxidative stress. Shveta Sharma et al 2011 in her review has said that some of the components of cardamom possess mutagenicity and carcinogenisity. 1-heptannol, 1- hexanol, Decanal, Nerolidol in *Elettaria cardamomum* were found to be non-mutagenic and non- carcinogenic.

Semecarpis anacardium

An acute toxicity study of methanol, petroleum ether and chloroform extract of *Semecarpus anacardium* has been conducted and LD$_{50}$ was determined. LD$_{50}$ of petroleum ether and chloroform extract was 700 mg/kg. LD$_{50}$ of methanol extract was found to be 500 mg/kg b.w. The researcher has concluded that...
1/10th of the doses would be safe dose for administration. Sheajer have reported that Semecarpus anacardium nut oil extracts exhibit nephro toxicity (50% W/V) in groundnut oil. Semecarpium anacardium toxins lead to acute renal failure due to hemodynamic effects.

Plumbago zeylanica
Acute dermal irritation test was conducted for pate of Plumbago zeylanica and Holoptela integrifolia. The result showed that there was no major dermal irritation on single application. Another research article has concluded that the dermotoxicity of Plumbago zeylanica might be limited to effects like moderate irritation.

Cicer arietinum
In acute toxicity study, methanolic and ethanolic extracts of Cicer arietinum seeds at the dose of 2g/kg did not reveal any toxicity in rats. Both acute and subacute toxicity study was conducted with the petroleum ether extract of Cicer arietinum. It was safe upto the dose of 5000mg/kg b.w.

Santalum album
In acute toxicity of hydroalcoholic extract of Santalum album leaves, there were no toxic signs up to the dose of 2000mg/kg b.w. Sandalwood oil has low acute oral and dermal toxicity. Only limited information on toxicity of Sandal oil is present. Burdock GA has stated that it has a long history of oral administration without any repeated adverse effects. The hydro alcoholic extract of Santalum album stem revealed to be safe upto 5000mg/kg.

Cinnamomum zeylanicum
Acute and chronic toxicity studies on ethanolic extracts of Cinnamomum zeylanicum bark in mice was carried out by Shaw AM etal. In chronic toxicity 100 mg/kg b.w dose / day caused a reduction in liver weight. There is increase in reproductive organ weight. In haematological report there was a increase in hb level. Experiments on the petroleum ether and chloroform extracts of Cinnamomum zeylanium were carried out by Chulasiri et al. It showed cytotoxic effects on human mouth carcinoma cell line and mouse lymphoid leukemia cell line.

Sulphur
Sulphur has low toxicity. The risk to animal and human health is very low. Short term studies show that Sulphur has very low acute oral toxicity and it does not irritate the skin. It has been placed in EPA Toxicity Category IV, the least toxic category, for these effects. The rat oral LD50 of Sulphur was greater than 5000mg/kg and greater than 8437 mg/ kg. The dermal LD50 for rats was greater than 5,000 mg/kg. Long term use of sulphur is not associated with risk of oncogenic, teratogenic or reproductive effects. It is non mutagenic in microorganisms.

DISTRIBUTION AND CHEMICAL CONSTITUENTS OF INGREDIENTS OF KANDHAGA RASAYANAM

Withania somnifera
Withania somnifera (L) Dunal is commonly called as Ashwagandha. Ashwagandha has been in use in Indian traditional medicine for more than 3000 years. Ashwagandha belongs to Solanaceae family. It is a perennial, xerophytic plant. Withania somnifera has been given the name Indian ginseng. This plant is found in the drier parts of India, Srilanka, Afghanistan, Baluchistan and Sind. In India it grows everywhere particularly on waste lands and on road sides. There are more than 35 chemical constituents present in the roots of Withania somnifera. It contains alkaloid, steroids, amino acids, volatile oil, starch, reducing sugar, glycosides. Withania somnifera root contains abundant iron. The active chemical constituents are alkaloids(isopellertierine, anferine), steroidal lactones (Withanolides, Withaferins), saponins containing an additional acyl group (Sitoindoside VII & VIII), and Withanoloides with a glucose at Carbon 27 (Sitonidoside XI & X). The roots of Withania somnifera consist of Withanolides. Withanolides have extraordinary medicinal properties. Most of the pharmacological activities of Ashwagandha are
mainly due to the presence of 2 main withanolides, withaferin A & withanolide D. Alkaloids and steroidal lactones are believed to be the main constituent of Ashwagandha. Alkaloids: Main constituent: withanine, other alkaloids: somniferine, somnine, somniferinine, withanamine, pseudo- withanine, tropine, pseudo- tropine, 3- a- gloyloxy tropane, choline, cuscohygrine, isopelletierine, anaferine and anahydrine. Sitoindoside VII & sitoindoside VIII are the two acyl steryl glycoside isolated from the root of Withania somnifera. Withanolides are steroidal lactones present in leaf. Recent research says that the following chemical compounds are also present in Ashwagandha. They are Anaferin, Anahygrine, Cysteine, Chlorogenic Acid, Cuscohygrine, Iron, Pseudotropine, Scopoletin, Somniferine, Somniferiene, Tropanol, Withanine, Withaninie, And Withanolides.

Terminalia chebula

Terminalia chebula are pyrogallol type. There are nearly 14 hydrolysable tannins. It contains anthraquinones, flavanoids, sterols, aminoacids, carbohydrates, glucose and sorbitol, resins, fixed oils etc. Chebulic acid, Chebulinic acid, Ellagic acid, gallic acid. It also contains punicalagin, terflavin A, terchebulin. The hydrolysable tannins in fruits were castalagin, ellagic acid, flavogallonic acid, punilagin, terchebulin. The kernels of the *Terminalia chebula* fruits contain fatty oil (49 %) which is quite similar to that of the composition of conventional oils.

Phyllanthus emblica

Phyllanthus emblica (Linn) or *Emblica officinalis* (Gaertn) is commonly known as amla. It belongs to the family Euphorbiaceae. It is a small to medium sized deciduous tree. This is cultivated in the dry forests of Chittagong, Chittagong Hill Tracts, Cox’s Bazar, Sylhet, Dhaka – Tangail (Sal forest) and Dinajpur. It grows in tropical and subtropical regions of China, India, Indonesia and the Malay Peninsula. The fruit of Amla is very rich in vit C. It contains tannin, colloidal substances, lipids, quercitin, gallic acid, phyllambic acid, ellagic acid, trigalloylglucose, terchebin, corilagin and embilic. The fruit pulp of amla contains Phyllembin and mucic acid. Bark, fruits and leaves all the three are rich in tannin. Fixed oil, phosphatides, tannins and essential oil are found in seeds. Bark, fruits and leaves contain lupeol, β-sitosterol and ellagic acid. Leucodelphinidin is present in the bark of *Phyllanthus emblica*. Linoleic acid is found in the oil from seeds. Yokozawa et al., 2007 has reported that cucuminoides, rutin and emblicol are found in amla. More than 80% of chemical composition of the fruit is water. The ash of the fruit contains chromium, zinc and copper. The seed oil contains the following fatty acids. They are linolenic, linoleic, oleic, stearic, palmitic and myristic acid. The hydrolysable tannins are Emblicanin A, Emblicanin B, punigluconin, pedunculagin. Rahman 2007 has reported the presence of kaempferol 3 O alpha L (6” methyl) rhannopyranoside, kaempferol 3 O alpha (6”ethylamnopyranoside) are the...
flavanoids present in the seed oil. Khanna et al. 1975 has reported the presence of phyllantidine and phyllantine alkaloids.

Terminalia bellerica

Terminalia bellerica Roxb. belongs to the family Combretaceae. It is a large deciduous tree. In India it is known as Bahera 85. Bahera grows throughout India, Sri Lanka and South East Asia 86,87. Fruits of *Terminalia bellerica* contains fixed oil with a phenolic ester known as hexahydroxydiphenic acid esters 88,89. The fruits contain tannins such as gallic acid, ethyl gallate, and ellagic acid. Belleric acid, chebulagic acid, glucose, glucosides etc are found in fruits 90,91. Arjungenin, bellericagenin A & B are the triterpenoids present in bahera 92. Bellericanin, a glycoside, 93,94, Gallo-tannic acid, resins & a greenish yellow oil are present in bahera 95. Ellagic acid, gallic acid, lignane namely termilignane and thanni lignin, 7-hydroxy 3′4′ (methylene dioxy) flavone and anolignan B10 are found in *Terminala bellerica*. It also contains tannins, ellagic acid, ethyl gallate, galloyl glucose, chebulaginic acid, phenylemblin, β-sitosterol, mannitol, glucose, fructose and rhamnose 96,97,98.

Zingiber officinale

Zingiber officinale, Roscoe. belongs to the family Zingiberaceae. The cultivation has its origin in China, which later spread to India, South East Asia, West Africa And Caribbean. Ginger is native to tropical Asia. It is cultivated commonly in India, China, South East Asia, West Indies, Mexico etc 99. The major constituent of ginger is sequiterpenoids with Zingiberene as the main component. It also contains β-sesquiphellandrene bisabolene and farnesene 100,101. Gingerol, a constituent of ginger imparts the pungent odour to the plant. The ginger oil contains monoterpenes (phellandrene, camphene, cineole, citral, and borneol) and sesquiterpenes (zingiberene, zingiberol, zingiberenol, β-bisabolene, sesquiphellandrene, and others). It also contains aldehydes and alcohols 102,103. Dried ginger powder contains Shogaol which is a dehydrated product of gingerol 104,105. A novel product Amadaldehyde has been isolated from ginger extract 106. Some pungent principles of *Zingiber officinale* rhizome are paradols, gingerdiols, gingerdiacetates, gingerdiones, 6-gingersulfonic acid, gingerenones etc. Diterpenes and gingerglycolipids A, B and C are also present in the rhizome 107. Phenylalkylketones or vanillyl ketones present in ginger are 6-gingerol 8- gingerol and 10-gingerol, 6-shogaol, 8- shogaol, 10-shogaol and zingerone. It also includes 6-paradol, 6- and 10- dehydrogingerdione and 6- and 10-gingerdione 108.

Piper nigrum

Piper nigrum, the black pepper belongs to the family Piperaceae 109. Black pepper is native to South India and Sri Lanka. They are cultivated in tropical region. The black pepper is considered as king of spices due to its pungent principle piperine 110. It grows in tropical and subtropical regions of India 111. The petroleum ether extract of *Piper nigrum* contains 2E,4E,8Z-N-isobutyleicosatrienamide, pellitorine, trachyone, pergumidiene and isopiperolein B. Piperidine and pyrrolidine alkalamides are present in *Piper nigrum*. The most important of these is piperine 113-116. Bergumidiene and trachyone are also present in *Piper nigrum* 117. Black pepper contains piptrigine, wisamine 118, Dipiperamide D and dipiperamide E 119.

Piper longum

Piper longum is commonly known as pipli, Indian long pepper. It has wide distribution in India especially in North – East India and Western Ghats. It usually grows in tropical semi evergreen type of forests 120. Pipli is native of Indo- Malaya region 121. *Piper longum* belongs to the family Pperaceae. The fruits of *Piper longum* shows the presence of volatile oil, starch, protein, alkaloids, saponins, carbohydrate and amygdalin. Tannins are absent 122. The alkaloids piperine, piperlongumine, piperlonguminine and methyl-3,4,5-trimehoxycinnamate are the major chemical constituents. The spikes of pipli plant contains piperine and piplatin. Alkaloid A, a new one closely related to pellitorine is isolated from pipli. It also contains 3 new alkaloids, namely, piperolactum A, piperolactum B and piporadione 123. Neelam and Krishnaswamy...
(2000) has mentioned that the roots of long pepper contains the following alkaloids, piperine, piperlongumine, piperlonguminine. Piperlongumine on purification yielded Cepharadione B, Cepharadione A, Cepharanone B, aristolactum A II norcepharadione B and 2 hydroxy (methoxy 4H dibenzoquinoline – 4,5 (6H) dione), ligins (Pluriatiol, fargosin, sesamine, asarine, guinensine piperclide) 124, Syvatine, dieudesmine are isolated from seeds 125. The essential oils in the plant consist of long chain hydrocarbons, mono and sesquiterpenes, caryophyllene as the main product 126,127. The pungency of the fruit is due to the alkaloid piperine. The fruit contains calcium, phosphorus and iron.

Elettaria cardamomum

Elettaria cardamomum. Manton is commonly known as Cardamom. It is locally known as “elachi”128. It belongs to the family Zingiberaceae. Elam is historically known as “queen of spices”. It is commercially cultivated in India, Sri Lanka, Guatemala and Tanzania 129, 130. Elachi is a perennial which is indigenous to India, Pakistan, Myanmar and Sri Lanka 131. *Elettaria cardamomum* contains α-terpineol, myrcene, heptane, subinene, limonene, cineol, menthone, α-pinene, β-pinene , (Shabnam et al 1987.) linalol, nerolidol,(Okugawa et al 1998) β-sitostenone, phytol, eugenyl acetate,(132bisabolene, borneol, citronellol, geraniol, geranyl acetate, stigmasterol and terpinene 133.

Embelia ribes

Embelia ribes Burm. belongs to the family Myrsinaceae. It is found in semi evergreen to evergreen forests of India, Sri Lanka. It is a climbing shrub 134. The berries of *Embelia ribes* contains embelic acid, volatile oil, fixed oil, resin, tannin, christembine (alkaloid) 135, phenolic acids like caffeic acid, vanillic acid, chlorogenic acid, cinnamic acid, o-cumaric acid 136. Embelin is isolated from *Embelia ribes* 137. It also contains potassium embelate 138. 2, 5-dihydroxy,3-undecyl-1,4-benzoquinone, embelin, quercitol, fatty ingredients, vilangin 139. The seeds show the presence of Cr, K, Ca, Cu, Zn and Mn along with increased carbohydrates 140. The active compound of the ripe fruit of *Embelia ribes* is embelin 141. Newer compounds isolated from the seeds of *Embelia ribes* are 3 – (4”-hydroxyoctadecanoyloxy)–p-quinonyl-5-methylene-8-(10-pentanyloxy)-p-quinine (embelinol), n-pentacosanyl-n-nonadeca-71-en-91–alpha–ol-11-oate (embeliaribyl ester) , 1,2,4,5-tetrahydroxy 3-undecanyl benzene (embeliol) and embelin 142.

Santalum album

Santalum album L. Known as sandalwood is one of the precious trees in the world 143. It belongs to Santalaceae family. The trees are widely distributed in India particularly in Southern region, namely Karmataka, Tamil Nadu and Kerala 144. The bark and sapwood of *Santalum album* tree are odourless. The essential oil is present in the roots and heartwood. Santylacetate and santalene are present in sandalwood 145. Santalol (90% or more) is the chief constituent of the volatile oil extracted from the roots and heartwood. It is a mixture of two primary sesquiterpene alcohols, C15H24O viz, α-santalol (bp-166-1670C) and β-santalol (b.p-177-1780C). More than hundred constituents are reported in sandalwood oil. Tannins, terpenes, resins and waxes have been reported. Hydrocarbons-santene(C9H14), nor-tricyclo-ekasantalene (C11H18), α- and β- santalenes (C15H24), alcohols-santenol (C9H16O), teresantalic acid (C10H16O), aldehydes- nor-tricyclo-kasantalal (C11H16O) 3,7,8 and the acids α-and β-santalalic acids (C15H22O2) and teresantalic acids (C10H14O2) are present in sandalwood oil 146. A new acid – ketosantalic(as methyl ester) & gamma – L – glutamyl-S-(trans-1-propenyl)-L-cysteine sulfoxide, have been isolated from sandal. Tricyclosantalal, α-santalene, trans-β- bergamotene, β-santalene (S & E), α-curcumine, α- santalol, beta-santalol(S&E), nuciferol, α-santalal and β-santalal are also present in *Santalum album* 147,148. The presence of antioxidants is also proved in sandalwood 149.
Cicer arietinum

Cicer arietinum is commonly called as chick pea or Bengal gram. It belongs to the family Fabaceae. Chick pea is cultivated in Sind, Bombay Presidency and as a pulse crop throughout India. Chick pea secretes highly acidic exudates. Rambold in 1981 has reported the pH of the exudates as 1. The most abundant organic acid in the nodules and roots is malonic acid. Malic acid is the major organic acid in the leaves and stem. The major group of flavanoid present in chick pea is isoflavanoid. Bose and Siddique in 1945 first reported the presence of isoflavonoids in chick pea. Chu et al isolated glucanase, a chitinase, an antifungal cyclophillin-like protein, and three antifungal peptides - cicerin, arietin, and cicearin from Chick pea. Stilbene compounds are isolated from the roots of chick pea. Ye et al has reported the isolation of 2 antifungal peptides having N-terminal sequence. Chick pea contains saponin formononetin-7-O-glucoside-6''-malonate, biochanin A-7-O-glucoside-6''-malonate and biochanin A-7-O-glucoside.

Semecarpus anacardium

Semecarpus anacardium Linn. is commonly called as bibba, bhallataki. It belongs to the family Anacardaceae. Its trade name is Marking nut/ Dhobi nut. The tree is widely distributed throughout the hotter parts of India. It is frequently found in dry deciduous forests of Central India. It is distributed in tropical and central parts of India. It is abundantly found in Assam, Bihar, Bengal and Orissa, Chittagong, Central India. Phenolic compounds are the most significant component of *Semecarpus anacardium* oil. Bhilvanol A (monoenerpacedyl catechol I) and bhilvanol B (dienepentadecyl catechol II) are the two main phenolic compounds. The glucoside present is anacardoside. The important biflavonoids isolated from *Semecarpus anacardium* are semecarpuflanavone, Jeediflavanone, galuflavanone, nallaf lavanone, semecapetin and anacarduflanavone. The nut contains anacardic acid, sterols, glycosides, vitamins, aminoacids. The preliminary chemistry analysis of nuts shows the presence of alkaloid, tannins, saponin, flavanoid, anthraquinones, ascorbic acid. Nut shell of *S.anacardium* contains biflavones A, C, A1, A2, tetrahydorobustaflavone, B (tetrahydromentoflavone).

Plumbago zeylanica

Plumbago zeylanica belongs to the family Plumbaginaceae. It is commonly called as Ceylon leadwort, Chitraka. It is distributed as a weed in tropical and sub-tropical countries. Large scale of cultivation is common in west Bengal and southern India. It grows in Andhra Pradesh, Karmataka, Maharashtra etc. The root contains plumbagin. The alkaloid Plumbagin is a natural napthquinone (5-hydroxy-2-methyl-1,4- napthoquinon). Only 1% plumbagin is present in whole plant and its concentration is increased in roots. The other constituents of the root are chitrane, zeylanone, dihydrosterone, 2- methyl napththaquin, plumbazeylanone and terpenoids, lupeol and teraxesterol. Alkaloids, glycosides, tannin, saponin and steroids are also present in the plant. Elliptinone, droserone are also present in chitraka. Naphthaquinones, 3-plumbagin, chloroplumbagin, chitanone, elliptone, coumarins, seselin, 5- methoxyseselin, xanthyletin and suberosin are present in the root of *Plumbago zeylanica*. The other compounds present are 2,2-dimethyl-5-hydroxy- 6-acetylchromene, plumbagin acid, ß-sitosterol, ß-sitosteryl-glucoside, bakuchiol, 12-hydroxyisobakuchiol, saponaretin, isoorientin, isoaffinetin, psorealen. Enzyme protease, invertase are present in the leaves and stem. Plumbagin is present very little or absent in leaves and stem. The aerial part of the plant contains naphthoquinones, sitosterol, lupeol, lupenylacetate, hentriacontane, and amino acids. The other compounds present are 2,2-dimethyl-5-hydroxy- 6-acetylchromene, plumbagin acid, ß-sitosterol, ß-sitosteryl-glucoside, bakuchiol, 12-hydroxyisobakuchiol, saponaretin, isoorientin, isoaffinetin, psorealen. Elliptinone, droserone are also present in chitraka. Naphthaquinones, 3-plumbagin, chloroplumbagin, chitanone, elliptone, coumarins, seselin, 5- methoxyseselin, xanthyletin and suberosin are present in the root of *Plumbago zeylanica*. The other compounds present are 2,2-dimethyl-5-hydroxy- 6-acetylchromene, plumbagin acid, ß-sitosterol, ß-sitosteryl-glucoside, bakuchiol, 12-hydroxyisobakuchiol, saponaretin, isoorientin, isoaffinetin, psorealen. Enzyme protease, invertase are present in the leaves and stem. Plumbagin is present very little or absent in leaves and stem. The aerial part of the plant contains naphthoquinones, sitosterol, lupeol, lupenylacetate, hentriacontane, and amino acids. It also contains aspartic acid, tryptophan, tyrosine, threonine, alanine, histidine, glycine, methionine, hydroxyproline, were isolated from the aerial parts.

Cinnamomum zeylanicum

Cinnamomum zeylanicum is indigenous to Srilanka and Southern part of India. It belongs to the family Lauraceae. The genus cinnamomum is distributed in tropical and sub-
tropical region of North America, Central America, South America, Asia and Australia.180 Cinnamaldehyde is the primary constituent in the bark, eugenol in leaf and camphor in root.181 Trans-cinnamaldehyde, eugenol and linalool are the main constituents of the essential oil obtained from \textit{Cinnamomum zeylanicum} bark.

Sulphur

The element sulphur is a ubiquitous compound of the environment. It is registered by the Environmental Pollution Agency as insecticide, fungicide and rodenticide. Sulphur has low toxicity and possesses very little risk, if any, to human health. It is a non-systematic contact and protectant fungicide with secondary acaricidal activity.182

DISCUSSION

Most of the herbal ingredients of Kandhaga Rasayanam have been reported to possess alkaloids, tannins, flavanoids, glycosides, sterols, saponins etc. Plumbagin contains amino acids. Marking nut possess alkaloid, tannins, saponin, flavanoid, anthraquinones, ascorbic acid. Sandal wood, cinnamon, cardamomum contains essential oil, volatile oils etc. Haritaki is found to contain anthraquinones, flavanoids, sterols, aminocids, carbohydrates, glucose and sorbitol, resins, fixed oils etc. Ashwagandha is rich in steroidal lactones and alkaloids. In this, each ingredient has many chemical constituents which support its therapeutic usage. It is evident from previous research that the secondary metabolides, including antibiotics show activity against bacteria, fungi, amoeba etc.183 Phytochemical studies have shown that plants with antimicrobial activity contain bioactive constituents such as tannins, flavonoids, alkaloids and saponins, alkaloids & flavinoids have been used as antiviral, antibacterial, antiamoebial & anticancer agents. Phenolic and polyphenolic are the other group of secondary metabolites flavanoids, sterols, phenols possess antibacterial and antifungal activity in general.184,185 The GC-MS analysis of the compound drug, Kandhaga Rasayanam showed the presence of Imidazole, Pyrazole compounds, Hexadecanoic acid, octadecanoic acid etc, which have antifungal property (unpublished). The toxicity studies on the ingredients show that the herbs are safe for consumption. At high doses, \textit{Semecarpus anacardium} showed toxicity. \textit{Elettaria cardamomum} produces toxicity at 0.3 mg/ g b.w. of mouse. This is evident from the review that drug at prescribed dose is safe for oral administration.

CONCLUSION

From the above review, it is clear that the drug Kandhaga Rasayanam is a potent drug for skin infections, urinary diseases, venereal diseases and vatha diseases. There was no toxicity reported with the individual herbs except for marking nut, \textit{Elettaria cardamomum} at high dose. Hence, the herbo mineral Siddha formulation can be taken as a safe and effective drug as mentioned in the classical text books.

REFERENCES

4. Thyagarajan R, Ed.Gunapadam (part 2 and 3) Thathu Jeeva vaguppu. 3rd Edn. Department of Indian Medicine and...

40. Ahmed N, Khan MSA, Jais AMM, Mohtruddin N, Ranjbar M, Amjad et al.,Anti-ulcer activity of Sandalwood (

83. Thakur, R.S.; Puri, H.S.; Husain, Akhtar, Major Medicinal Plants of India, Central
Institute of Medicinal and Aromatic Plants, Lucknow, India,(1989).

85. Indian Herbal Pharmacopoeia, Published by Indian Drug Manufacturer’s Association, Mumbai, 429-438, (2002).

97. Patani, Indian Herbal Pharmacopoeia, Published by Indian Drug Manufacturer’s Association, Mumbai, 429-438,(2002).

98. Shankaranarayanan s, Mooligai thavarangalin mukithuvamum adhan vedhi porutkalum1st Edn, harishi publications Chennai, India, 92,(2009).

106. Chrubsakis JE, Roufogalis BD and Chrubsasik D, Evidence of effectiveness of herbal anti-inflammatory drugs in the treatment of painful osteoarthritis and

120. Pipli : An important income generating eco-friendly non-wood forest product. State forest research institute Department of environment & forests government of Arunachal pradesh (India) Itanagar-791111.

156. The additional principal chief conservator of forests. “Semecarpus anacardium” Linn.

