ANTIBACTERIAL ACTIVITY OF TOPICAL SIDDHA MEDICINE
*SIRATTAI THYLAM AGAINST SELECTED HUMAN PATHOGENS

*Sivakkumar and Juliet

1National Institute of Siddha, Tanbaram Sanatorim, Chennai, Tamilnadu.
2Sri Sairam Siddha Medical College and Research Centre, Chennai.

ABSTRACT

Siddha system of medicine is the main traditional medicine which is very popular in south India. In this system herbals are mainly used for the medicine preparation and to treat the diseases. Each and every part of the herbs can be used for various, multiple ailments because of their different phyto constituents. In Siddha, medicines has been classified into Aga marunthu (internal) and Pura marunthu (external) having 32 forms of medicines in each. The external remedies are very useful for topical ulcers, skin diseases like eczema, psoriasis and fungal infections. An attempt has been made to evaluate the In vitro antibacterial activity of special siddha medicine sirattai thylam which is prepared from the shells of coconut. This oil has been widely used for all types of skin diseases especially for fungal infection as topical application. In vitro antibacterial activity was tested by cup-plate method against the major infection causing pathogens Staphylococcus aureus, B - Haemolytic Streptococci, Streptococcus pyogenes, Escherichia coli, Proteus specious, Salmonella Typhi, Salmonella Paratyphi, Klebsella pneumoniae, and Pseudomonas aeruginosa. The result has been evaluated as the diameter of the inhibition zone of microbial growth showed that the sirattai thylam was more active against both gram positive and gram negative bacteria. Finally this study concluded that the sirattai thylam can be used as an anti bacterial agent.

KEYWORDS: Siddha medicine, Sirattai thylam, antibacterial, cup-plate method.

INTRODUCTION

An antimicrobial is an agent that kills microorganisms or inhibits their growth. Antimicrobial medicines can be grouped according to the microorganisms they act primarily
against. For example, antibacterials (commonly known as antibiotics) are used against bacteria and antifungal are used against fungi. Use of substances with antimicrobial properties is known to have been common practice for at least 2000 years.

Long before mankind discovered the existence of microbes, the idea that certain plants had healing potential, indeed, that they contained what we would currently characterize as antimicrobial principles, was well accepted. Since antiquity, man has used plants to treat common infectious diseases and some of these traditional medicines are still included as part of the habitual treatment of various diseases.

Plants have been used as folk remedies. For centuries, the ethno-botanical literature has described the usage of plant extracts, infusions and powders for diseases now known to be of viral origin. The ethno pharmacology provides an alternative approach for the discovery of antimicrobial agents, namely the study of medicinal plants with a history of traditional use as a potential source of substances with significant pharmacological and biological activities.[2] Herbal preparations are more frequently used to prevent and treat several diseases in world. In developing countries, the World Health Organization (WHO) estimates that about 80% of the population relies on plant based preparations used in their traditional medicinal system and as the basic needs for human primary health care.[3] In recent years, there is a need to study the plants having different values in their medicinal properties. Therefore, several medicinal plants have been evaluated for possible an antimicrobial activity and potential cure from a variety of ailments especially of microbial origin.[4, 5]

The traditional methods, especially the use of medicinal plants, still play a vital role to cover the basic health needs in the developing countries too and moreover the use of herbal remedies have increased in the developed countries in the last decades. In this connection, plants continue to be a rich source of therapeutic agents.[6] In the recent years, infections have increased to a great extent and resistant against antibiotics, become an ever increasing therapeutic problem. Due to the indiscriminate application of antibacterial drugs most of the microbial organisms have developed high resistance to a good number of the commercial antibiotics. This coupled with other problems like the dangerous side effects of some commercial antibiotic drugs have led the scientists to think of other alternatives like new antimicrobial substitutions from other sources especially medicinal plants.[7, 8, 9] Nature has been a source of medicinal agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources; many of these isolations were based
on the uses of the agents in traditional medicine. This plant-based, traditional medicine system continues to play an essential role in health care, with about 80% of the world’s inhabitants relying mainly on traditional medicines for their primary health care.\cite{10,11} According to the World Health Organization, medicinal plants would be the best source to obtain a variety of drugs. Therefore, such plants should be investigated to obtain a thorough knowledge about their properties, safety and efficacy.\cite{12} There is a renewed interest in traditional medicine and an increasing demand for more drugs from plant sources. The presence of antimicrobial substances in the higher plants is well established fact and they provided a source of inspiration for novel drug compounds as plants derived medicines have made significant contribution towards human health. Such a novel drug has been used in Siddha system of medicine for a long time is Sirattai Thylam\cite{13} (oil taken from the shell of coconut) which is indicated for taenia infection\cite{14} has been evaluated for its antimicrobial activity.

MATERIALS AND METHODS

Sirattai Thylam Preparation

The sirattai thylam has been prepared as per the literature reference by Kuzhi Pudam method in kuzhi thyla karuvì (which is a special traditional instrument made up of mud pot having minute holes in the bottom). The shells of coconut are kept inside the mud pot and closed with a suitable mud lid and finally sealed with clay paste over the lid. A small vessel is placed under the mud pot to collect the oil extracted from the shell. This unit is placed in a pit and then burnt with 30 numbers of varatti (cow dung cake). While burning, the oil will ooze out from the mud pot and extracted in the vessel (Fig-1). This process may take 4 hours approximately and oil can be taken. This extracted oil is called as Sirattai thylam.

Anti bacterial activity

The in-vitro antibacterial activity of Sirattai thylam was performed by using the Cup-plate method.\cite{15} The required number of Muller hinton agar plates were prepared and swabbed with different isolates of lag phase cultures of test organisms. The plates were allowed to stand for few minutes. Required numbers of 6 mm diameter wells were made over the plates at an equidistant position. Wells were loaded with 50 µl of the drug at the concentration of 62.5, 125, 250, 500, and 1000 mg / ml. Dimethyl sulfoxide (DMSO) was used as the solvent.\cite{16} The bacterial plates were kept at 37 °C for 18 – 24 hours. The zone of inhibition was measured using the calipers.
RESULTS

The results of antibacterial activities of Sirattai thylam showed concentration dependent activity against tested microorganisms (Table - 1). The different concentration of sirattai thylam (62.5, 125, 250, 500, and 1000 mg/ml) were tested against gram positive and gram negative bacterial strains. The higher concentration of sirattai thylam had inhibitory effects towards the bacterial strains namely Escherichia coli, Staphylococcus aureus, Salmonella Paratyphi, Klebseilla pneumonia, and Streptococcus pyogenes.

Table: 1 Antimicrobial activity of Sirattai Thylam.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Organism</th>
<th>Zone diameter in mm / Concentration of the drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1000µl/ml</td>
</tr>
<tr>
<td>1.</td>
<td>Staphylococcus aureus</td>
<td>26</td>
</tr>
<tr>
<td>2.</td>
<td>B-Haemolytic Streptococci</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Streptococcus pyogenes</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>Escherichia coli NCIM 2931</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>Escherichia coli ATCC 25922</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>Proteus Spp.</td>
<td>29</td>
</tr>
<tr>
<td>7.</td>
<td>Salmonella Typhi</td>
<td>13</td>
</tr>
<tr>
<td>8.</td>
<td>SalmonellaParatyphi</td>
<td>25</td>
</tr>
<tr>
<td>9.</td>
<td>Klebseilla spp.</td>
<td>22</td>
</tr>
<tr>
<td>10.</td>
<td>Klebseilla pneumoniae</td>
<td>23</td>
</tr>
<tr>
<td>11.</td>
<td>Pseudomonas aeruginosa NCIM 2945</td>
<td>24</td>
</tr>
</tbody>
</table>

Figure: 1: Sirttai Thylam Preparation- Kuzhi pudam method
Figure: 2: Antibacterial activity of sirattai thylam

DISCUSSION

The sirattai thylam is one of the special traditional herbal formulations in siddha system of medicine which is very effective for all kinds of skin disorders. The antibacterial activities of
sirattai thylam were tested against bacterial strains. The results showed promising antibacterial activity against the bacteria tested (Fig-2). The highest zone of inhibition against Staphylococcus aureus is 26mm, B-Haemolytic Streptococci is 21mm, Streptococcus pyogenes is 22mm, Escherichia coli (NCIM2931) is 28mm, Escherichia coli (ATCC25922) is 26mm, Proteus spp. is 29mm, Salmonella Typhi is 13mm, Salmonella Paratyphi is 25mm, Klebseilla spp. is 22mm, Klebsilla pneumoniae is 23mm, and Pseudomonas aeruginosa is 24mm. This effect was concentration dependent.

CONCLUSION
The good antibacterial activity of sirattai thylam against Staphylococcus aureus, etc is an indication that the sirattai thylam is beneficial as a cure for skin diseases. The inhibiting nature of sirattai thylam reveals that the simple process and single ingredient provides a significant effect against the gram positive and negative bacteria.

ACKNOWLEDGEMENT
The Regional Research Institute of Unani Medicine (Central Council for Research in Unani Medicine, New Delhi), West Madha Church Road, Royapuram, Chennai -13.

REFERENCES
1. Anti microbial- Definition from the Merriam – Webster online Dictionary.

13. R.Thiyagarajan; Gunapadam Thaathu Jeeva Vakuppu, Published by Directorate of Indian Medicine & Homeopathy, Chennai, 2004; 40.

14. R.Thiyagarajan; Siddha Maruthuvam Sirappu, Published by Directorate of Indian Medicine & Homeopathy, Chennai, 2008; 267.
